

Women in Science & Engineering Leadership Institute University of Wisconsin-Madison

Women in Technology Sharing Online (WitsOn): Assessing Usage, Satisfaction, and Outcomes from an E-Mentoring Course

Julia Nelson Savoy

Presentation Goals

Study overview

- Introduction
- WitsOn program description
- Research objectives
- Theoretical framework
- Research methods
- Findings
- Discussion

Questions and comments

Introduction

- Mentoring in research
 - Mentoring research is <u>plentiful</u> (Crisp & Cruz, 2009; Haggard, Dougherty, Tuban, & Wilbanks, 2011; Jacobi, 1991)
 - Varying definitions of mentors, mentoring (Anderson, 2005)
 - Multiple functions of mentoring (Jacobi, 1991; Kram, 1985; Nora & Crisp, 2008)
 - Important foundation work for studying impact and positive outcomes
- Mentoring in practice
 - Formal or informal programs in a variety of settings (Henry, Bruland, & Sano-Franchini, 2011)
 - Intentionally or randomly assigned pairs (dyads)
 - Research or project-based interactions

Introduction

- Growth of (electronic) e-mentoring
 - Expanded mentoring offerings with comparable success to face-to-face programs (Haggard, Dougherty, Tuban, & Wilbanks, 2011; Leck, Elliott, & Rockwell, 2012)
 - Distinct advantages (Bierema & Hill, 2005)
 - Unique challenges and limitations (Cozza, 2011)
- Mentoring for women students in STEMM
 - Research evidence suggests alternative formats to expand access and opportunity (Leck, Elliott, & Rockwell, 2012)
 - Several dyadic e-mentoring programs have shown successful outcomes (e.g., MentorNet, 2013; Single, 2005)

WitsOn program description

- Collective, connectivist e-mentoring MOOC
 - Fall 2012: 6-week, self-directed massive online open course
 - Offered nationally; over 70 institutions participated
 - Instructors served as mentors and discussion moderators
 - Weekly "lead mentor" videos from highly successful leaders in industry and academia (WitsOn, 2012)
- Program goals
 - Connect female undergraduate STEMM students with many successful mentors
 - Help students envision themselves in STEMM careers
 - Encourage student action toward career goals
 - Motivate students to seek out offline mentoring (Lewin, 2012; WitsOn, 2012)

Research objectives

- Study purposes
 - Assess WitsOn as a tool to support retention and persistence over time
 - Evaluate program goal achievement
 - Gather user feedback for future programming
- Achieved by investigating
 - Participants and their characteristics
 - Amount and type of Witson engagement
 - Satisfaction with WitsOn
 - Career decision-making expectations and beliefs
 - Outcomes attributed to WitsOn participation

Theoretical framework

- Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994).
 - Central concept is self-efficacy (Bandura, 1986, 1997)
 - Analysis includes contextual factors like barriers and supports, personal characteristics
 - Self-efficacy expectations influence career choice, performance, persistence (Hansen & Pedersen, 2012)
- Interpreting the WitsOn experience through SCCT
 - Mentoring can provide two of the four sources of selfefficacy (Bandura, 1997; Concannon & Barrow, 2010)
 - Women may form self-efficacy expectations differently than men, through these same self-efficacy sources (Zeldin & Pajares, 2000; Zeldin, Britner, & Pajares, 2008)

Research methods

- Participants
 - 65 WitsOn participants from one participating institution
- Instrumentation
 - Two-part online self-administered survey
 - Part I assessed usage, satisfaction, outcomes
 - Part II asked about characteristics, career decision-making beliefs
 - Demographic information
 - Likelihood of persisting in major
 - Career decision-making self-efficacy expectations
 - Anticipation and perception of career barriers

Research methods

- Data collection and analysis
 - 5 week collection period (pre-notice, invite, 3 reminders)
 - Descriptive statistics of numerical data
 - Content analysis for open-ended items (Mayring, 2000)

Results: Participants

- Response rates and demographic characteristics
 - 17 of 65 responded (26%)
 - All female undergraduates from variety of STEMM fields
 - 92.3% Caucasian or White, 7.7% Asian
 - None were Hispanic or Latina
- Past, present, and planned academic programs
 - None were first-generation college students
 - Most had not changed schools or majors while enrolled
 - Very unlikely to change majors, transfer to another school, or drop out
 - Only two would change majors
 - Only one would transfer to another school

Results: Participants

Long-term (ten year) career goals

- Program completion, including advanced degrees
- Begun a career
- Engage in further career decision-making

Category	Frequency	Frequency
Degree completion	Bachelor's degree	3
	Master's degree	1
	Medical or doctoral degree	8
Begun a career	Have found a job in industry	1
	Have found a job in academia	2
	Have found a job in my field (unspecified)	5
Further career decision-	Make choices about moving to or remaining in	1
making	industry or academia	
	Have achieved satisfaction with career choice	2

Table 1: Respondents' long-term career and academic goals

Results: WitsOn Usage

Respondents spent less than one hour per week

- 52.9% 0-20 minutes
- 29.4% 21-40 minutes
- 17.6% 41-60 minutes

Most logged on for about half or more of the course

- 58.8% logged on 2-3 weeks
- 23.5% logged on 4-5 weeks

Results: WitsOn Usage

Respondents spent the most time reading

- Self-reported contribution to content was relatively low
- Most likely to respond to posts of instructors, then peers
- Least likely to initiate their own new thread

Table 2: Respondents' contribution to content in WitsOn

How often did you	Never	Rarely	Sometimes	Often
post a new discussion thread?	76.5% (13)	17.6% (3)	5.9% (1)	0.0% (0)
receive a response from a peer to your posts?	82.4% (14)	5.9% (1)	0.0% (0)	11.8% (2)
receive a response from an instructor to your posts?	76.5% (13)	5.9% (1)	11.8% (2)	5.9% (1)
respond to posts initiated by student peers?	64.7% (11)	11.8% (2)	23.5% (4)	0.0% (0)
respond to an instructor's note, post, or biography?	52.9% (9)	23.5% (4)	17.6% (3)	5.9% (1)

Results: Satisfaction with WitsOn

- Respondents were satisfied with their experience
 - 71.4% would continue to participate if given the opportunity
 - 71.4% felt it was worth the time they spent
 - 38.5% recommended to a friend/peer during the course
 - 64.2% would recommend to a friend/peer in the future
- Most beneficial aspects of the experience
 - Reading mentor biographies
 - Positive examples of success, overcoming barriers
 - Career pathway examples
 - Specific advice on balancing work-life responsibilities
 - Interactivity in the online community
 - Self-directed nature of the course

Least satisfied with lead mentor and peer interaction

	Not at all 1	A little 2	Some- what 3	Very 4	Extremely 5
the peer interaction you experienced in WitsOn?	16.7% (2)	0.0% (0)	50.0% (6)	8.3% (1)	8.3% (1)
the instructor interaction you experienced in WitsOn?	8.3% (1)	8.3% (1)	25.0% (3)	41.7% (5)	8.3% (1)
the lead mentor interaction you experienced in WitsOn?	16.7% (2)	8.3% (1)	41.7% (5)	16.7% (2)	8.3% (1)
your overall WitsOn experience?	8.3% (1)	8.3% (1)	58.3% (7)	25.0% (3)	0.0% (0)

Table 3: Respondents' satisfaction with WitsOn

Results: Career Decision-Making

- Moderate to high career decision-making selfefficacy
 - Used the Career Decision-Making Self-Efficacy-Short Form (Betz, Klein, & Taylor, 1996)
 - Most confident in goal selection and planning tasks
 - Least confident in self-appraisal tasks

Category	Mean	SD
Self-appraisal	6.84	1.98
Gathering occupational information	6.92	1.90
Goal selection	7.18	1.90
Planning	7.00	1.93
Problem solving	6.92	1.98

Table 4: Career decision-making self-efficacy domains

Results: Career Decision-Making

- Low to moderate expectation, perception of career barriers
 - Used the Career Barriers Inventory (Swanson & Tokar, 1991)
 - Expected to encounter barriers in balancing work-life, finding a job
 - Expected these to most likely hinder career progress

lable 5: Expectations and perceptions of career barriers				
Category	Likelihood of		Extent of career	
	encountering barrier		progress	
			hindrance	
	Mean	SD	Mean	SD
Choice of career	1.91	1.75	2.22	2.01
Finding a job	2.64	1.69	2.77	1.89
Job performance	1.83	1.45	2.28	2.00
Balancing a job with other life aspects	3.00	1.92	2.50	1.90

Results: WitsOn Outcomes

- Respondents reported an increase in each area
 - Reported the most impact on interest in pursuing goals, confidence in ability to set goals, motivation to achieve them

To what extent do you feel your WitsOn experience has changed	Strongly/ somewhat decreased	Neither increased, decreased	Strongly/ somewhat increased
your confidence in your ability to set your ten-year goals?	0.0% (0)	42.9% (6)	57.1% (8)
your confidence in your ability to achieve your ten-year goals?	0.0% (0)	57.1% (8)	42.8% (6)
your interest in pursuing your ten-year goals?	0.0% (0)	35.7% (5)	64.3% (9)
your motivation to pursue your ten-year goals?	0.0% (0)	42.9% (6)	57.1% (8)
the likelihood that you will achieve your ten-year goals?	7.1% (1)	64.3% (9)	28.6% (4)
your interest in participating in another e-mentoring program?	23.1% (3)	38.5% (5)	38.5% (5)
your interest in participating in a face-to-face mentoring program?	7.1% (1)	42.9% (6)	50.0% (7)

Table 6: Outcomes attributed to WitsOn experience

Results: Program Feedback

- Nearly half (47.1%) felt using WitsOn was easy
 - Overwhelmed by the number of threads
 - Desired more precise search results relatable to personal experience
- Suggestions for future iterations
 - Ability to review threads in specific disciplines
 - Wider variety of mentor-instructors, representing more disciplines
 - Ability to identify students in similar disciplines

Limitations

- No comparative results (pre-post, to entire participant group, or to a comparable control group)
- Self-reported outcomes only
- Low response rate
- Limited diversity among response group

Discussion

- Program goal achievements
 - Students were likely to persist in STEMM
 - Participants attributed positive outcomes aligned with program goals
 - Despite relatively low active contributions and time invested, students reported impact from the activity
- Theoretical interpretation
 - Respondents valued the stories of mentors' experiences
 - Results consistent with other SCCT research
- Research implications
 - Several avenues for improved, broader research design
 - Continued need to assess impact for underrepresented groups

References

- Anderson, D. R. (2005). The importance of mentoring programs to women's career advancement in biotechnology. *Journal of Career Development, 32*(1), 60-73.
- Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. New Jersey: Prentice Hall.
- Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W. H. Freeman and Company.
- Betz, N. E., Klein, K. L., & Taylor, K. M. (1996). Evaluation of a short form of the career decision-making selfefficacy scale. *Journal of Career Assessment, 4*(1), 47-57.
- Bierema, L. L., & Hill, J. R. (2005). Virtual mentoring and HRD. *Advances in Developing Human Resources, 7*(4), 556-568.
- Byars, A. M. (1997). Cultural influences on the career self-efficacy of African-American college women. (Doctoral dissertation, Arizona State University). Available from ProQuest Dissertations and Theses database. (UMI No. 9803585).
- Concannon, J. P., & Barrow, L. H. (2010). Men's and women's intentions to persist in undergraduate engineering degree programs. *Journal of Science Education and Technology*, *19*(2), 133-145.
- Cozza, M. (2011). Bridging gender gaps, networking in computer science. *Gender, Technology and Development, 15*(2), 319-337.
- Crisp, G., & Cruz, I. (2009). Mentoring college students: A critical review of the literature between 1990 and 2007. *Research in Higher Education, 50*(6), 525-545.
- Haggard, D. L., Dougherty, T. W., Turban, D. B., & Wilbanks, J. E. (2011). Who is a mentor? A review of evolving definitions and implications for research. *Journal of Management*, *37*(1), 280-304.
- Hansen, M. J., & Pedersen, J. S. (2012). An examination of the effects of career development courses on career decision- making self-efficacy, adjustment to college, learning integration, and academic success. *Journal of the First-Year Experience & Students in Transition, 24*(2), 33-61.
- Henry, J., Bruland, H. H., & Sano-Franchini, J. (2011). Course-embedded mentoring for first-year students: Melding academic subject support with role modeling, psycho-social support, and goal setting. *International Journal for the Scholarship of Teaching and Learning, 5*(2), 1-22.

References

- Hird, J. S. (1995). The relationship of sources of efficacy information to career decision-making self-efficacy. (Doctoral dissertation, Arizona State University). Available from ProQuest Dissertations and Theses database. (UMI No. 9533381).
- Jacobi, M. (1991). Mentoring and undergraduate academic success: A literature review. *Review of Educational Research, 61*(4), 505-532.
- Kram, K. E. (1985). *Mentoring at work: Developmental relationships in organizational life*. Lanham: University Press of America.
- Leck, J. D., Elliott, C., & Rockwell, B. (2012). E-mentoring women: Lessons learned. *Journal of Diversity Management*, 7(2), 83-96.
- Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. *Journal of Vocational Behavior, 45*(1), 79-122.
- Lewin, T. (2012, September 16). Online mentors to guide women into the sciences. *New York Times*. Retrieved from http://www.nytimes.com/2012/09/17/education/online-mentoring-program-to-encourage-women-in-sciences.html
- Mayring, P. (2000). Qualitative content analysis. Forum Qualitative Sozialforschung / Forum: Qualitative Social, 1(2), Art. 20, <u>http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204</u>.
- MentorNet (2013). *MentorNet: E-mentoring for diversity in science and engineering*. Retrieved March 21, 2013 from MentorNet website, http://mentornet.net/.
- Nora, A., & Crisp, G. (2008). Mentoring students: Conceptualizing and validating the multi-dimensions of a support system. *Journal of College Student Retention: Research, Theory and Practice, 9*(3), 337-356.
- Single, P. B. (2005). MentorNet: E-mentoring for women students in engineering and science. *Journal of Women and Minorities in Science and Engineering*, *11*(3), 295-309.
- Swanson, J. L., & Tokar, D. M. (1991). Development and initial validation of the career barriers inventory. *Journal of Vocational Behavior, 39*(3), 344-361.

- WitsOn. (2012). *Join women in technology sharing online (WitsOn)*. Retrieved January 15, 2013, from WitsOn website, <u>https://piazza.com/witson</u>.
- Zeldin, A. L., Britner, S. L., & Pajares, F. (2008). A comparative study of the self-efficacy beliefs of successful men and women in mathematics, science, and technology careers. *Journal of Research in Science and Teaching, 45*(9), 1036-1058.
- Zeldin, A. L., & Pajares, F. (2000). Against the odds: Self-efficacy beliefs of women in mathematical, scientific, and technological careers. *American Educational Research Journal, 37*, 215-246.

Thank you!